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The effect of density gradients on the supersonic wall modes (acoustic

modes) of a 2-D confined compressible shear layer were investigated using

linear analysis. Due to the inadequacies of the hyperbolic tangent profile, the

boundary layer basic profiles were used. First a test case was taken with the

same parameters as in Tam and Hu's 15 analysis with convective Mach number

Me = 1.836 and density ratio of 1.398. Three generalized inflection points

were found giving rise to three modes. The first two show similar properties

to the Class A and B modes in Ref. 15, and the third is an 'inner mode' which

will be called a Class C mode. As the density ratio is increased, the smallest

of the three neutral phase speeds tends towards the speed of the lower velocity

stream, and the other two eventually coalesce and then disappear. These two

effects lead to a linear resonance between the Class B modes which increases

the cutoff frequency and growth rate of the lowest mode. In fact, growth rates

of 2-4 times the test case were found as the density ratio was increased to 7.

A similar trend is observed for the Class A modes when the density ratio is
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decreased from the test case, but the growth rate is not changed by much from

the test case.
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I. Introduction

The study of compressible shear layers has been thrust into the spotlight in

the past decade mainly due to the need for supersonic combustors (SCRAM-

JETS) in future generation aircraft. Numerous analyses have been conducted

in order to better understand the instability characteristics and dynamics of

compressible shear layers. In what follows a brief overview of some of these

analyses will be presented with emphasis on work done using linear analysis.

In the overview the term 'constant density' will refer to cases when the den-

sity and temperature of the basic flow are taken to be constant throughout the

shear layer so that their variation in the shear layer due to viscous heating is

ignored. The researchers who have included viscous heating effects have used

either the Busemann-Crocco (B-C) relations or some solution of the boundary

layer equations for the density and temperature profiles.

Some early work done on the inviscid instability of compressible shear lay-

ers was reported in a series of papers by Blumen 1, Blumen et al. 2 and Drazin

and Garvey 3. The work involved a 2-D temporal linear stability analysis of a

compressible, constant density, unbounded shear layer modeled by a hyperbolic

tangent profile based on the cross-stream coordinate, with equal and opposite

velocities at the ends. For subsonic Mach numbers, they found a single mode
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whose growth rate decreased as the Mach number increased. This mode is a

Kelvin-Helmholtz (K-H) type of instability similar to that occurring in incom-

pressible shear layers. As the Mach number is increased, the first order effect

of compressibility is to decrease the growth rate of the 2-D K-H mode. For su-

personic Mach numbers, two modes were found with equal but opposite phase

speeds. These modes had very small growth rates compared to the subsonic

K-H mode. Jackson and Grosch 4 conducted a spatial stability analysis of a

compressible shear layer (lower stream was quiescent) modeled by a hyperbolic

tangent profile whose independent variable was a similarity variable based on

Howarth's transformation. Since this similarity variable is dependent on the

Mach number, the hyperbolic tangent profile based on this transformation is

also dependent on the Mach number. They computed the neutral modes for

2-D and 3-D disturbances and also found two modes for supersonic Mach num-

bers. One mode was supersonic with respect to the slow stream and subsonic

with respect to the fast stream and was called a 'fast mode'. The other was

supersonic with respect to the fast stream and subsonic with respect to the

slow stream and was called a 'slow mode'. These modes were characterized

by Mack 5 as radiating vorticity modes because of the oscillatory behavior of

the eigenfunctions outside the chear layer. Sandham and Reynolds [6'7] inde-

pendently confirmed the existence of these modes using a profile based on the
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similarity solution of the compressible boundary layer equations. They also

showed that for convective Mach numbers (Me), i.e. Mach number relative

to the phase speed of the instability, above a critical subsonic value the most

unstable disturbances were three-dimensional. This is in clear contrast to the

incompressible case. Similar results were obtained earlier by Gropengiesser 8

and Lessen et a/. 9'10. Other studies on the unbounded compressible shear

layer were conducted by Ragab and Wu [11'12'13], with the latter two references

dealing with subharmonic instabilities in this type of shear layer.

For later reference, it is also necessary to mention some results obtained

by researchers concerning the use of the different profiles used for the above

analyses. Sandham and Reynolds 6 showed that use of the hyperbolic tangent

profile based on the cross-steam coordinate was unsatisfactory for cases of

high shear or density ratio even at very low Mach numbers. They showed that

errors of up to 16% in the growth rates can exist relative to the growth rates

obtained by use of the boundary layer profiles. Jackson and Grosch 14 used

three different profiles in investigating the fast and slow modes in a spatial

shear layer. The first was a hyperbolic tangent profile based on the similarity

variable mentioned above, the second was a profile based on the similarity

solutions of the boundary layer profiles with a linear viscosity law and Prandtl

number (Pr) equal to 1.0, and the third was a similar profile but with the
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Sutherland viscosity law incorporated and Pr = 0.7. They showed that the

results obtained by using the first profile were only qualitatively similar to the

ones from the other two profiles.

The analyses which more closely pertain to the current research were done

on bounded (confined) shear layers as shown in Figure 1. Tam and Hu 15 and

Greenough et al. 16 conducted spatial and temporal analyses for a bounded

shear layer. Greenough et. al used a hyperbolic tangent profile based on the

cross-stream coordinate and only considered the constant density case. They

also found a single mode for subsonic Mach numbers. However, multiple modes

were found when the Mach number was supersonic. These modes are different

from the radiating vorticity modes found in the unbounded shear layer and

were referred to as supersonic wall modes by Greenough or acoustic modes by

Mack 5. Tam and Hu 15 conducted a thorough spatial analysis of these modes

using both a hyperbolic tangent profile (based on the cross-stream coordinate

and using the B-C relations) as well as a vortex sheet model. For the vortex

sheet model, they found two families of instability modes and labeled them

Class A and Class B modes. They also found two families of neutral modes

which they label Class C and D acoustic neutral modes. For the finite shear

layer case, only the unstable solutions were shown because the contour of

integration was not deflected in their analysis to avoid the critical layer. 17
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Tam and Hu found that for a relatively thick shear layer the most unstable

mode is the first Class A 2-D mode. Mack 5 discussed in detail the nature

of these acoustic modes as they pertain to boundary layers, wakes, jets and

confined shear layers. The underlying condition which needs to exist in order

for acoustic modes to be observed is a region of trapped supersonic flow relative

to the phase speed of the instability wave. This means that either two sonic

lines (Mc = 1.0), two walls or a combination of the two must exist in the flow.

More results and facts about Tam and Hu's analysis are given in the body of

the present paper since they are needed for comparison to our own results.

The effects of walls on the instabilities occurring in compressible shear

layers were investigated by Zhuang et al. 18 and Morris et al. 19. They showed

results indicating that the subsonic mode was not affected by the walls as

long as the walls were not too close (10 vorticity thicknesses away). They also

showed that, as the walls were brought in from infinity the radiating vorticity

modes for supersonic Mach numbers first decreased in growth rate and then

disappeared. Meanwhile, a new set of modes, which were not continuations of

the vorticity modes, appeared and dominated the 2-D disturbances.

There have been numerous numerical simulations done on unbounded shear

layers such as Lele 20, Sandham and Reynolds [6'7], Ragab and Wu _3, and Ragab

and Sheen 21 confirming the results obtained from linear analysis. Some have
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also considered the bounded shear layer in their numerical simulations, such

as Greenough et al., Sigalla et al. [22'23], Huang and Riley 24, Lu and Wu [25'26]

and Gathmann et al. 27.

Many experiments have been conducted on the instability of shear layers,

one of the most famous experiments being done by Brown and Roshko28for

very low subsonic Mach numbers. They showed the existence of large scale

coherent structures which were formed within the shear layer and also showed

that the growth of the shear layer depended linearly on the velocity ratio pa-

rameter (_). They also looked at the effect of density ratio on the growth

of the shear layer by taking three points (p_ = 7, 1, _) and observed that when

the density of the lower(slower) stream is greater than the upper(faster) stream

the growth rate increases from the uniform density case. The opposite was true

when the upper stream was heavier than the lower one. Recently experiments

on the compressible mixing layer have been conducted by Papamoschou and

Roshko 29'30. They observed a reduction in growth rate as a function of Mach

number. They also showed that the growth rate curves could be parameterized

by the use of a single Mach number which they defined as the Convective Mach

Number ,Me. The definition of this Mach number is based upon using a refer-

ence frame associated with the dominant wave. They defined two convective

Mach numbers:



Me1 = U1 - Uc (1.1)
al

and

= Vc- U2, (1.2)
a2

where Uc is the speed of the dominant structure and al,a2 are the speeds of

sound in the two streams. By using an argument that the two streams share a

common stagnation point, they showed that if the two streams have the same

specific heat ratio then M01 - M_2. Also from these arguments, it follows that:

Uc - a2U1% alU2, (1.3)
al + a2

and

Mc - U1 - U2. (1.4)
al % a2

For small Mach numbers and almost equal specific heat ratios, they showed

that one could express Uc in terms of the density ratio:
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ul _plJ (1.5)--- 1

U1 1 + (_-_
',pl/

Papamoschou 31 has recently given a revised version of the above model

for the case when the Mach number is high enough to produce shocks within

the flow. In these cases it was found that M,_ :_ M,_, and so an asymmetric

situation arises. This was predicted in the analysis of Jackson and Grosch 4 in

regard to their slow and fast modes. (i.e. the supersonic modes don't obey

the Uc formula given above even for the constant density case). Papamoschou

gave a revised model accounting for shock formation in the stream which is

supersonic with respect to the dominant structure. More will be said regard-

ing this result obtained by Papamoschou in later sections. The concept of

convective Mach number has been applied to linear analysis by replacing Uc,

the speed of the dominant structure, by cr, the phase speed of the instability.

In this paper, first the governing equations and solution procedures will

be discussed. The profiles of the basic flow velocity and density will be cal-

culated from the boundary layer equations rather than assumed as in Tam

and Hu 15. The results for a test case matching the parameters in Tam and

Hu's analysis will then be presented. In the final portion, the results obtained

when increasing and decreasing the density ratio from this test case will be
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discussed.

II. Flow Model and Governing Equations

The model which is studied here is a confined compressible shear layer

formed by two gases with different velocities, densities and properties, but

with the same constant pressure. Figure I shows the configuration used in this

analysis. The subscript 1 is used for the quantities related to the high speed

freestream and the subscript 2 for the quantities of the low speed freestream.

The sti¢amwise coordinate is x, the spanwise coordinate is z, and the cross-

stream coordinate is y. For simplicity, free slip wall boundary conditions are

assumed at the walls of the channel. It is also assumed that the flow is inviscid,

non-conducting, and non-diffusive. For this situation the governing equations

are the Euler equations for a two species system and in dimensional form can

be written as the following:

Op*
-SV+ v. (p*_') = o (2.1)

,,Og*

p _- + _*.w*) + vp* = o (2.2)
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,,Oh* _.
p + Vh*)

Op*

cOt*
-'* (2.3)v "Vp* = 0

--q-_*'VCa =0 (2.4)

p* = p*R*T* (2.5)

P, P..2__ * • •
Ca = -_7, Cb = p., p = p, + p, Ca + Cb = l (2.6)

where p* is the density of the gas mixture, T* is the temperature, p* is the

pressure, v is the velocity vector, h* is the enthalpy which can be related to

the temperature by h* = * * - *[cpaCa + Cpb(1 Ca)IT* where Cpa and C_b are the

specific heat ratios at constant pressure, and Ca is the mass fraction (species

• *
concentration) of species a. Also, R* -- [RaCa + R b (1-Ca)] is the gas constant

of the mixture.

These equations are non-dimensionalized using the fast (upper) freestream

quantities, p*, U*, T_* and the height of the channel, H*. Thermodynamic

properties are also non-dimensionalized by the upper freestream thermody-

namic properties, c_a and R_. Based on this non-dimensionalization, the den-

sity ratio _ and the velocity ratio _ are defined as p_ and Us, respectively.
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Once the equations are non-dimensionalized, they are linearized around a par-

allel basic flow (_(y), P, U(y), C'a(y)). These basic flow quantities can be found

in several ways which will be discussed later. The flow variables can be written

as:

p = _(y) + p'(=,_,z, t) (2.7a)

p= P+pr(x,y,z,t) (2.7b)

= O(y)+ ur(x,y, _,t) (2.7c)

v = vt(x, y, z, t) (2.7d)

w - wC(x,y,z,t) (2.7e)

T = T(y)+ T'(x,y,z,t)

' t)ca = C'a(y)+ Ca(=,y,z,
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Normal modes are assumed for these infinitesimal disturbances with the

form:

q'= _(y)_=p[i(k=+ _z - ,,,t)] (2.s)

where _ is the eigenfunction, k and/3' are the streamwise and spanwise wave

numbers and w is the frequency. In general k, B and w are complex. Once these

normal modes are substituted into the equations of motion, a single O.D.E.

can be found for the disturbance pressure eigenfunction:

2kDU
D2p

f
+

"t (_ - kO)

where

d
V-'--

dy

_,,Ca+q,b(1-Ca)
= _.C',,+ _,(i - C',,)

and lkll and "rl are, respectively, the Mach number and the ratio of specific

heats of the high speed freestream.
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The 2-D equation is obtained by setting/3 = 0 (3-D disturbances will be

considered later).

2kD?l

,

The above equation is solved subject to the boundary conditions

1

D_5=0 y = -4-_ (2.11)

which come from the y-momentum equation by setting the normal velocity at

the wall to zero. The rest of the eigenfunctions can be found from the following

equations:

= Dib
i_(&- ]¢Cr) (2.12a)

i_(&- _:0") (2.12b)

= _(i]¢TJ+ Di_)+ Dp_
i(_,- k(r) (2.12c)
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_° = (2.12d)

III. Basic Flow Profiles

Before the method by which the eigenvalues are obtained is discussed, it is

necessary to discuss the basic velocity and density profiles used in this anal-

ysis. The choice of profiles has varied from using piecewise constant profiles

to profiles obtained from numerical simulations. One of the simpler ways

adopted by many researchers is to assume that the basic velocity has a form

of a hyperbolic tangent profile. As stated in the Introduction Sandham and

Reynolds 6 have shown that this is not a good approximation for the actual

velocity profile obtained by solving the compressible boundary layer equations

when there is high shear or a high density ratio. A better approximation is the

use of a scaled variable based on Howarth's transformation for the variable in

the hyperbolic tangent profile. Jackson and Grosch 14 demonstrated that this

profile only gives qualitatively similar results when compared to the results ob-

tained by using profiles found from the similarity solutions of the compressible

boundary layer equations. Planch4 and Reynolds 32 showed that the profiles

obtained by solving the O.D.E.'s obtained from the similarity transformation
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of the compressible equations agreed very well with those found by numerical

simulations. Because of the above reasons and reasons which will become ev-

ident later in this section, the profiles chosen for this analysis were obtained

by solving the compressible boundary layer equations after making use of a

similarity variable.

The boundary layer equations for a multi-species flow are given in Kuo 33.

For a two-species non-reacting system at constant pressure and Pr = Sc =

Le _ 1, they can be written as:

p'u* Ou* , , Or* 0 / , Ou* (3.1b)

, ,oh7 , ,oh; o r ,ohT_
p u -8_x,+ p v _'C¢_,=y 8_'__' -8_y') (3.1c)

, ,OC. , ,OCa 0 [ ,OCa_
(3.1d)

* *R'T*p =p (3.1e)
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where h_ =cpT* . +-_-_'2

The solution procedure used for these equations is almost identical to that

used in Planch_ and Reynolds with one difference being that in our analysis

the product of the viscosity, #*, and the density, p*, is assumed to be constant

(#p = 1) since the gas constant R is variable, instead of _ = I as in their paper.

Also, the transformation from the similarity variable, 7, to the cross-stream

coordinate, y, is done by integrating the following equation:

oy 1,N

and the appropriate value of the quantity _e is found from the condition

6_= I.

Finally the profiles are re-non-dimensionalized using the height of the chan-

nel. In all cases considered the ratio of the vorticity thickness to the channel

height is taken as _. = 0.1 which corresponds to that used by Greenough et

al. 16, Sigalla eta/. [22'23] and Tam and Hu. This value of the vorticity thick-

ness insures that the profiles have reached their freestream values far from the

confining wails. It should be noted that the profiles used in this analysis are

applicable for only small distances from the splitter plate.

As stated in the Introduction, the test case that is taken here is the one
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used in Tam and Hu's analysis with the following properties:

MI = 4.5 M2 = 1.6

a-k_-- 1.29 71 = 1.67(He) % = 1.40(N_)
a2

Figure 2a,b and c show the profiles used in Tam and Hu's analysis and the

ones calculated from the boundary layer equations. Besides the quantitative

differences seen in the velocity and density profiles, a major qualitative differ-

ence is the existence of three extrema in the product of the basic density and

the basic vorticity profiles _D_', as shown in Figure 2c. This phenomenon is

dependent on the convective Mach number and the ratio of the specific heats.

From Lees and Lin 34, it is known that the zeros of this product can give rise

to neutral modes. In the unbounded case, Jackson and Grosch 4 showed that

only one of these extrema is related to a critical neutral mode. This is the

subsonic neutral mode whose eigenfunctions decay exponentially away from

the mixing layer. However, for the bounded case, all three extrema can be

associated with critical neutral modes, as we shall show.

It is also important to discuss the effect of the density ratio on the profiles

which are calculated for our linear analysis. Figure 3 shows the velocity profiles
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at a fixed convective Mach number and velocity ratio for different density

ratios. It can be seen that as the density ratio is reduced from unity the high

speed side has a "fuller" profile and the low speed side has a bigger defect.

The opposite is true when the density ratio is increased from unity. Figure 4

shows the effect of the density ratio on _Dtr. It is evident that the emergence

of the three extrema at a fixed convective Mach number and velocity ratio

is dependent on the density ratio. For the parameters considered here the

three extrema exist for approximately 1.1 < p2 < 1.7. The consequences

of the multiple extrema will become evident in the later section where the

characteristics of the instability modes are presented.
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IV. Numerical Procedure For Finding The Eigenvalues

The numerical procedure used to find the eigenvalues is very similar to

the method used in Tam and Hu. The method is a combination of the grid

search method used for their vortex sheet problem and the numerical dispersion

relation used for their finite shear problem and is described below.

Outside the shear layer (lYl >> _.), Dfi _ 0. Therefore, equation (2.10)

becomes the familiar vortex sheet equation with solutions:

where

_(y) = Acos[Al(1- Y)I 6<y_1 (4.1a)

-_ > y _ -1 (4.1b)

_ = [M?(_- ku,)2 - k2]_ (4.2a)

2 a_ (w- kU_) 2- k2] -_ (4.2b)=

Following Tam and Hu, equation (2.10) is integrated by a fourth order

Runge-Kutta method from -6 (below the shear layer where equation (4.1b)

holds) to +6 (above the shear layer where equation (4.1a) holds). The nu-

merical solution at y = 6, say B f(6), and its derivative are matched to the
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corresponding solutions of equation (4.1a), thus giving rise to the following

8,
eigenwlue relation for 16[ >> 7/;.

W -- - cos[X_(1 - 6)]f'(6)+ X_ sin[)h(1- 6)]./(6)--0 (4.3)

The above equation is zero for specific vaJues of (w, k). There are two view-

points taken when solving this eigenvaJue problem, namely, the spatial and

temporal viewpoints. In a temporal viewpoint, the wavenumber, k, is taken

to be real and the frequency, w, is the complex eigenvalue which is found by

solving the above eigenvMue problem. Conversely, in a spatial viewpoint, the

frequency is taken to be real and the wavenumber is the complex eigenvalue.

The viewpoint chosen for a particular system usually depends on whether the

instability is absolute or convective in nature; a temporM viewpoint is adopted

for absolute instabilities, and a spatial viewpoint is chosen for convective in-

stabilities arising due to an upstream wavemaker. Rigorous mathematical

techniques exist based on the behavior of the impulse response of a system

which dictate the appropriate viewpoint. For detailed discussions on this sub-

ject, the reader is referred to Briggs 35, Bers 36 and Huerre and Monkewitz 37.

For the current analysis a spatial viewpoint is adopted since both streams of

the shear layer are supersonic and therefore all the eigenvalues are initially

taken to be located in the upper-half of the complex wavenumber plane where
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the frequency is complex and its imaginary part is a large positive number

(Tam and Hul5).

To find the sets of values (Wr, kr+iki) for which equation (4.3) holds, a grid

search procedure is employed. A coarse grid is used on the domain of interest

in the complex k-plane. For a given w, Ira(W)=0 and Re(W)=0 are plotted

by a contouring routine, and their intersection points are taken as the initial

location of the roots. Then by the use of a Newton's iteration routine these

eigenvalues are further refined. When performing this procedure, one must

keep two things in mind. First, when w and k are real, the integration contour

for finding f(6) must be deformed into the complex y-plane to avoid the critical

layer. Thus the contour of integration must be deformed in such a way that

it is below the critical layer singularity but above the singularities of the basic

profiles in the complex y-plane.

amplifying and evanescent waves.

given in Briggs and Tam and Hu.

Second, one needs to distinguish between

A good explanation for this procedure is

By following Briggs, if one needs to find

the amplifying waves for a given real frequency ft, then one first starts with

a complex frequency f_ + if_l, where f_l is a large enough positive number

such that all the waves corresponding to the response of the system for x < 0

are in the lower half of the complex wave number plane and all the waves for

x > 0 are in the upper half plane. Then the imaginary part of the frequency
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is incremented to zero, while keeping the real part constant. The roots that

drop below the real k-axis which were originally in the upper half plane are

the amplifying waves for x > 0. Similarly, the roots starting from the lower

hMf plane and crossing reM k-axis represent amplifying waves for the x < 0

response.

V. Parameters and their Variation

In order to isolate the effect of basic flow density gradients from other

effects such a'" shear and compressibility, the following method is proposed.

The convective Mach number based on the current non-dimensionalization is

_ven by:

Me = U* - U_ _ MI(1 - U2) (5.1)

a_' + a_' 1 +

In order to remove the first order compressibility effects, it is chosen to

work with a constant convective Mach number. The above convective Mach

number was shown by Papamoschou 31 to be a good parameter to describe the

effects of compressibility. Also the velocity ratio _ = U2 is also taken to be

constant. Jackson and Grosch 14 show that the maximum temporal growth
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rate is proportional to (1 - [72). Although the consequences of varying this

term for spatial calculations has not been investigated it was decided not to

vary this term for our purposes. Another way to think about this condition

comes from recognizing that if this term is unchanged then the difference in

mean shear (U* - U*) is unchanged. Therefore, as the density ratio _ = p_ is

changed, the fast stream Mach number, M1, is changed to keep the convective

Mach number constant.

VI. Mode Labels

The convention used for the instability modes is the same as that used in

Tam and Hu. All unstable modes whose phase velocity start from the velocity

of the high speed stream will be labeled as Class Amn modes and all unstable

modes whose phase velocity start from the velocity of the low speed stream

will be labeled as Class Bran modes. The m and n subscripts are the 3-D

and 2-D mode numbers respectively. The bulk of this paper will deal with the

rn = 0, i.e. a 2-D case.

VII. Results and Discussion

A. Test Case P2 = 1.398
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As stated earlier, the first case which is considered in this analysis is a

test case based on the parameters used in the Tam and Hu analysis which

correspond to Mc = 1.836, p_ = 1.398, and U2 = 0.276. For this case, the

basic profiles have three generalized inflection points (D(_DU) = 0) which

are summarized in Figure 5. Figure 6 shows the phase speed of the three

different types of instability modes which are present for this case. The modes

represented by the solid lines are the Class A modes which start from Cph =

OJ

= UI which is a non-inflectional neutral solution. This type of solution

is described in Mack [5'38] in conjunction with the boundary layer acoustic

instabilities and is possible only when a trapped region of supersonic flow

relative to the phase speed of the instability wave exists in the flow. Some of

these modes, such as A01 , have wave velocities that are bounded by the velocity

at the upper inflectional neutral point, and the others, such as A02, remain

unstable. The modes represented by the dashed lines are modes which start

with a wave velocity equal to the mean velocity at the middle inflectional

neutral point and which apparently have not been discussed so far in the

literature. These modes will be labeled as Class C modes. Some of these

modes have wave velocities which are bounded by the velocity at the upper

inflectional neutral point and the other remain unstable. The third set of

modes which are represented by the dash-dot lines are the Class B modes.
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These modes start from Cph --- U2 which is a non-inflectional neutral solution.

The phase velocity of all of these modes are bounded by the velocity at the

lower inflectional neutral point. It is clear that the use of a regular hyperbolic

tangent profile based on the y coordinate would not give the results presented

above (cf. Fig. 2c). Runs were made using a hyperbolic tangent profile, with

the results being that both Class A and B modes terminated at the one and

only inflection point. These results are shown in Figure 7.

Figure 8a,b and c show the spatial growth rates of the Class A, B and C

modes respectively. The interesting thing to note here is that the C01 mode has

the highest growth rate as opposed to the A01 mode when the hyperbolic tan-

gent approximation is used. Furthermore, these modes are associated with a

local minimum of _DU. In constant density or incompressible flows, instability

is, of course, associated only with a maximum of vorticity.

The disturbance pressure eigenfunctions of the three modes at the maxi-

mum growth rates are given in Figures 9a,b and c. If one defines two convective

Mach numbers Mcl and Mc2 as:

Mc_ = U* - Cph (7.1a)

Me2 = cph -- U:
a_' (7.1b)
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where Mcl is the convective Mach number for stream 1 and Mc_ is that for

stream 2, then the modes with the maximum growth rates in each Class, i.e.

A03,B04 and C01, can be described in the following manner. The A03 mode

is supersonic with respect to the slower stream and subsonic with respect to

the high speed stream. This can be seen in the shape of the eigenfunction

which is monotone in the upper half of the channel and osculatory in the lower

half. The opposite is true for the B04 mode. The C01 mode is supersonic

with respect to both streams and shows an oscillatory behavior over the entire

channel height.

Another difference observed when using the profiles based on the compress-

ible boundary layer equations as opposed to the hyperbolic tangent profiles is

the magnitude of the eigenfunctions. When the hyperbolic tangent profiles are

used the eigenfunction with the maximum magnitude is the streamwise pertur-

bation velocity eigenfunction. This is not true for the boundary layer profiles

where the perturbation density eigenfunction possesses the largest magnitude.

B. Increasing Density Ratio

Next, the density ratio is increased to p2 - 3.0. Different results were

obtained for this case ranging from the change in basic profiles to the growth

rates and eigenfunction magnitudes. First, the results for this density ratio
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will be given and then the changes that occur between 1.398 < p2 < 3.0 will

be discussed by considering some intermediate cases.

The basic profiles have only one generalized inflection point for p2 = 3.0.

The velocity at that point is close to that of the low speed stream. This is

Rlustrated in Figure 10. Figure 11 shows the phase speed of the instability

waves present in this case. The Class A modes show similar behavior to

the ones present in the case of p2 = 1.398; however there are more Class A

modes present in the same frequency range considered. Also, since two of the

inflectional neutral points are not present, these modes now remain unstable.

The Class B modes, however, are very different. In this frequency range only

the B01 mode has a growth rate which is higher than 0.01. The phase speeds

of the rest of the Class B modes (not shown) start at the velocity at the non-

inflectional neutral point Cph = U2 and end at the velocity at the inflectional

neutral point. These modes have very small growth rates. It will be shown

later that, due to several factors as the density ratio is increased, a linear

resonance occurs between the Class B modes which results in the particular

configuration of the Class B modes shown in the figure. The growth rate of the

Class A modes and the B01 modes are given in Figures 12a and b. The many

peaks present in the growth rate curve of the B01 mode is characteristic of the

linear resonance (see below) which is occurring. It is interesting to note that
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the peaks located at w = 5.775 and w - 6.62 have growth rates -ki "- 0.7401

and 0.7404 respectively. These two are almost identical and so both frequencies

might be excited in the nonlinear portion of shear layer evolution. Also, this

mode possesses the highest growth rate among all the modes and has twice

the growth rate of the maximum growth rate for the p2 = 1.398 case. This

trend continues at higher density ratios and will be discussed further when the

results for the case of p2 - 7.0 are presented.

Figure 13 shows the phase speed of the B01 mode only. It can be seen

that the phase speed has an oscillatory behavior and becomes neutral after

many oscillations. This behavior can also be attributed to the linear resonance

and will also be discussed later. Another interesting result is observed in the

behavior of the eigenfunctions. The eigenfunctions for the density and species

concentration show large spikes near the critical layer and the magnitude of

the density eigenfunction is two orders of magnitude higher than the velocity

and pressure eigenfunctions. Figure 14a,b,c,d and e show the eigenfunction for

the B01 mode at the first growth rate peak (w = 5.775) . The eigenfunctions

at the second peak are very similar to those of the first peak. For comparison,

Figure 14c also shows the perturbation density eigenfunction at the maximum

growth of the test case which is normalized with respect to the eigenfunction

magnitudes of the test case.
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The next step will be to show the emergence of the different phenomena

described above by analyzing the instability characteristics for density ratios

between 1.398 and 3.0. As the density ratio is increased from 1.398, the upper

and middle inflection points begin to move towards one another and the lower

inflection point moves lower such that the velocity at that inflection point tends

towards Us. At p2 _ 1.71 the upper and middle inflection points coalesce, and

beyond that density ratio they disappear. This movement of the inflection

points, i.e. changes in the basic profiles due to the effects of the density ratio,

lead to a linear resonance between the Class B modes, as discussed below.

In order to show that the interaction between the modes is indeed a res-

onant interaction, a series of figures are provided showing how the modes

coalesce and interact. First, Figure 15 shows the phase speed of the Class B

modes for p_ = 1.398 and p2 -- 1.8. As the density ratio is increased in this

range the lower inflectional neutral phase speed decreased from 0.4 to 0.37. As

this happens the curved parts of the phase speed curvse of the B01 mode and

the B02 mode connect at a density ratio between 1.398 and 1.8. As the density

ratio is increased beyond that point, calculations show that the neutral phase

speed decreases and the curves separate leaving the B01 with the upper curved

portion of the old B02. This process continues and for p_ "- 1.8, as the figure

shows, five of the original Class B modes have interacted. This type of process
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is well described in Craik(1985). Figure 16 shows the growth rate curves for

the two density ratios, and again it is possible to see the how the curve for

p2 = 1.8 evolves from the others. We should also note that for P2 = 1.8 the

growth rates of the B02 - B05 modes are not shown because the magnitude of

the growth rates is less than 0.01. Finally, Figure 17a and b show the phase

speed and growth rates of the Class B modes for only p2 = 1.8. On these

figures the location where the higher modes become neutral are shown with

the vertical dotted lines. The purpose of these figures is to show that these

neutral frequencies correspond well with frequencies corresponding to the local

minima of the B01 mode, cf. Fig. 16.

Figure 18 shows the growth rate of the B01 for different density ratios. It

is clear from this figure that as the density ratio is increased more and more

Class B modes have resonant interactions with one another to cause the B01

mode to have more and more peaks. Figure 19 shows the number of peaks in

the growth rate curves as a function of the density ratio. It is clear that this

is a non-linear step function of the density.

Also, as the density ratio is increased, the phase speed of the B01 mode,

which is the mode with the maximum growth rate, becomes more and more

asymmetric. This type of phenomenon is observed in the experiments con-

ducted by Paparnoschou 31. In his experiments, he observed that: "in su-
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personic combinations M_, is always highest (Uc "_ U2) while in supersonic-

subsonic combinations, M02 is always highest (Uc _ U1)". In our analysis, an

increase of the density ratio from the test case increased M2 and lowered M1

causing both Mach numbers to be between 2 and 4. Decreasing the density

ratio increased M1 and decreased M2 such that M2 became almost sonic.

The final comment which needs to be made concerns the effect of the

density ratio on the growth rate of the modes. After all, this is one of the

limiting factors in the design of supersonic combustors. Figure 20 shows the

growth rate of the B01 mode for p2 = 7.0. This growth rate is nearly 400%

greater than the growth rate at p2 = 1.398. This type of increase in the growth

rate as a function of the density ratio is supported by observations made by

Brown and Roshko 28 who stated that growth rates in supersonic shear layers

are more sensitive to changes in the density ratio than subsonic shear layers

and that increases of up to 300% in growth rates were observed in supersonic

shear layers.

Figure 21 shows the maximum growth rate as a function of density ratio

for the cases where mode B01 has become dominant. Density ratios from 2.0

to 13 have been considered. Some leveling off of the curve is noticed as the

density ratio is increased.

The effect of the density ratio on the Class A modes varies from mode to
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mode. For density ratios where Class C modes still exist, increasing the density

ratio slightly increases or decreases the growth rate of some Class C modes and

some Class A modes. These modes eventually coalesce and interact, and once

the upper two inflection points disappear, only the Class A modes remain. As

the density ratio is increased from 3.0 to 7.0 so that no Class C modes exist,

the most unstable mode, A01, practically has a nearly constant growth rate,

and the other Class A modes actually have lower growth rates.

C. Decreasing the Density Ratio

When the density ratio is decreased from the test case, almost the oppo-

site of the previous case occurs. First, the lower and middle inflection points

move towards one-another and eventually coalesce and disappear. The upper

inflection point remains and tends upwards so that the inflectional neutral ve-

locity tends towards [71. These two effects should lead to a resonant interaction

between the Class A modes.

To investigate the above conjecture, two density ratios were considered,

p2 - ½ and p2 - _. In order to keep the convective Mach number constant,

the gases in the mixing layer were changed to Ar in the fast stream and CH4

in the slow stream. This was done so that the Mach number of the slow stream

remainedsupersonic(Ms= 1.150forp2= _ andM2= 1.000forp2= _).
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Figure 22 shows the phase speed of the Class A and B modes for p_ =

1 The Class B modes (B02 and on) remain unstable, and within the same5"

frequency range (0 < w < 5) there are more Class B modes than in the

p_ ---- 1.398 case. A difference arises in the behavior of the/301 mode. For

this density ratio, this mode becomes neutral at the upper inflectional neutral

point. Recall that for p_ -- 3.0, the A01 mode did not have the corresponding

behavior. Now, the A01 mode for this case interacts with the modes A03 - A05.

However, the A02 mode is not involved in this interaction and remains unstable.

Figures 23a and b show the growth rates for the Class A and B Modes. It is

clear that both the A01 and A02 modes have appreciable growth rates, and

again like the higher Class B modes in the case of p_ = 3.0, the higher Class

A modes (A03 - A05) have growth rates which are less than 0.01. Due to the

linear resonance occurring between some of the modes, the growth rate of the

A01 mode (the maximum growth rate for this density ratio) is greater than

the maximum growth rate for the p_ -" 1.398 case. However, the maximum

growth rate for this case is only slightly higher than the test case. The growth

rate of the Class B modes are smaller for this density ratio as compared to the

test case.

When the density ratio is decreased to p_ - _, more interactions occur

between the modes which is a bit more interesting. Figure 24 shows the phase
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speed of the modes present at this density ratio. Comparing this figure to

Figure 22, one can see several changes. As the density ratio is decreased from

1
to _, modes B01, A01 and A02 interact with one another which causes the

B01 mode to be the dominant mode. Looking closely at the two figures the

transition between them can be realized. First, just as there are more and more

Class B modes in a certain frequency range as the density ratio decreases, there

are fewer and fewer Class A modes. As the density ratio is decreased the B01

mode in Figure 22 interacts with the A02 mode near the inflectional neutral

point. Then this new B01 mode, which has picked up the majority of the A02

mode's curve, interacts with the A01 mode. This final interaction causes the

B01 mode to be the mode which exhibits a linear resonance with the rest of the

Class A modes. Actually at this density ratio more than 25 Class A modes are

involved in this resonant interaction. Figure 25 shows the growth rate for the

B01 mode. Notice the unstable bandwidth which is many factors above any

other mode considered at any density ratio. However, the increase in growth

rate from the p2 = ½ case is only about 0.05.

VIII. Concluding Remarks

The effects of density gradients on the linear stability characteristics of

the acoustic wall modes in a confined supersonic shear layer were studied. A
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test case based on the analysis of Tam and Hu 15 was chosen. A new class

of modes was discovered for this case which was due to the emergence of

three generalized inflection points in the _DU profile. This new mode has the

highest growth rate for the test case density ratio and is associated with the

local minima of the _D0 profile.

Next, the case of increasing density ratio was considered. Increasing the

density ratio caused the _D0 profile to eventually have only one inflection

point, with a velocity close to that of the low speed stream. This in turn

led to a linear resonance between the Class B modes. As the density ratio

was increased, more and more Class B modes were involved in the resonant

interaction. Another phenomenon observed for this case was the increase in

the growth rate as the density ratio increased. This increase in the growth

rate seems to continue as the density ratio is increased with only some leveling

of the curve noticed at the highest density ratio. Two effects can contribute to

this increase. The first is the shape of the velocity profile. As the density ratio

is increased the velocity is "fuller" on the low speed side which in turn results in

higher growth rates as observed by Sandham and Reynolds 6 in relation to the

subsonic shear layer. The second effect has to due with the linear interaction

of the modes which causes the "strengthening" of the first mode.

As the density ratio was decreased, the _D_7 profile also lost two out of
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the three inflection points. However, the remaining inflection point was the

opposite of the one for the increasing density ratio case, with the velocity at

the remaining inflection point being close to that of the high speed stream.

This led to an interaction between the Class A modes, and for very low density

ratios, also the B01 mode. The increases in the growth rates for this case are

small compared to the increasing density ratio. This is due to the fact that as

the density ratio is decreased the velocity profile is "fuller" on the high speed

side which tends to reduce the growth rate. This nearly offsets the effect of

the linear resonance.

A major conclusion which c:_n be drawn from this analysis is that when

a much heavier gas occupies the slow stream of a supersonic confined mixing

layer, the growth rate can be increased by 4-5 factors from the case when

the densities of the two gases are nearly equal. These high growth rates are

comparable to the incompressible growth rates and could lead to better mixing

in different applications.
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